

Neural stochastic differential equations for time series modelling

James Foster

University of Bath (joint with Patrick Kidger, Xuechen Li, Terry Lyons and Harald Oberhauser)

Outline

1 Introduction

2 Neural Ordinary Differential Equations

③ Neural Stochastic Differential Equations

4 Numerical experiments

6 References

Introduction

Two dominant modelling paradigms:

Differential equations and Neural networks

Neural differential equations: awkward hybrid or perfect match?

Goal for this talk: convince you of the latter!

Introduction

Two dominant modelling paradigms:

Differential equations and Neural networks

Neural differential equations: awkward hybrid or perfect match?

Goal for this talk: convince you of the latter!

- Neural Ordinary Differential Equations, NeurIPS 2018.
- Neural Controlled Differential Equations for Irregular Time Series, NeurIPS 2020.
- Universal Differential Equations for Scientific Machine Learning, 2020.
- Scalable Gradients for Stochastic Differential Equations, AISTATS 2020.
- Neural SDEs as Infinite-Dimensional GANs, ICML 2021.
- Efficient and Accurate Gradients for Neural SDEs, NeurIPS 2021.

Outline

1 Introduction

2 Neural Ordinary Differential Equations

③ Neural Stochastic Differential Equations

4 Numerical experiments

6 References

There are differential equations where the vector field is parametrised as a neural network.

Standard example – Neural ODEs (Chen et al. 2018).

$$\frac{dy}{dt} = f_{\theta}(t, y(t)),$$
$$y(0) = y_0,$$

where f_{θ} can be any neural network (feedforward, convolutional, etc).

Examples of neural ordinary differential equations

A simple example: The SIR model for modelling infectious diseases

$$\frac{d}{dt} \begin{pmatrix} s(t) \\ i(t) \\ r(t) \end{pmatrix} = \begin{pmatrix} -bs(t)i(t) \\ bs(t)i(t) - ki(t) \\ ki(t) \end{pmatrix},$$

where b and k are parameters that are learnt from data.

At the other extreme, Neural ODEs can outperform standard machine learning models (e.g. ResNets) on tasks such as image classification [2].

James Foster (University of Bath)

Neural SDEs for time series

Reconstruction and extrapolation of spirals with irregular time points (taken from [1])

James Foster (University of Bath)

Universal differential equations for scientific computing

Universal differential equations [3] are the general idea of modelling systems with

$$\frac{dy}{dt} = f_{\text{known}}(t, y(t)) + f_{\text{unknown}}(t, y(t)).$$
(1)

- f_{known} describes the system well and utilizes domain knowledge.
- f_{unknown} is a (small) neural network so that (1) can better fit data.

Figure: Approximating a FENE-P model for non-Newtonian fluids (from [3]).

James Foster (University of Bath)

• Continuous time, so well suited for handling (irregular) time series

- Continuous time, so well suited for handling (irregular) time series
- Flexible, includes "mechanistic" and "deep" models (+ hybrids [3])

- Continuous time, so well suited for handling (irregular) time series
- Flexible, includes "mechanistic" and "deep" models (+ hybrids [3])
- State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]

- Continuous time, so well suited for handling (irregular) time series
- Flexible, includes "mechanistic" and "deep" models (+ hybrids [3])
- State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]
- Choice of ODE solver allows trade-offs between accuracy and cost

- Continuous time, so well suited for handling (irregular) time series
- Flexible, includes "mechanistic" and "deep" models (+ hybrids [3])
- State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]
- Choice of ODE solver allows trade-offs between accuracy and cost
- Allows for "continuous time" backpropagation with $\mathcal{O}(1)$ memory!

- Continuous time, so well suited for handling (irregular) time series
- Flexible, includes "mechanistic" and "deep" models (+ hybrids [3])
- State-of-the-art ODE solvers, e.g. adaptive steps or reversibility [2]
- Choice of ODE solver allows trade-offs between accuracy and cost
- Allows for "continuous time" backpropagation with $\mathcal{O}(1)$ memory!

Potential limitation

ODEs are deterministic, so are not suitable for modelling "noisy" data.

1 Introduction

2 Neural Ordinary Differential Equations

3 Neural Stochastic Differential Equations

4 Numerical experiments

6 References

Neural Stochastic Differential Equations

The Neural SDE takes the form

$$y_t = \ell_{\theta}(x_t),$$

$$dx_t = \mu_{\theta}(t, x_t) dt + \sigma_{\theta}(t, x_t) dW_t,$$

$$x_0 \sim \nu_{\theta}(\xi),$$

where

- $\mu_{\theta}, \sigma_{\theta}$ and ν_{θ} are neural networks.
- ℓ_{θ} is a linear map.
- *W* is a multidimensional Brownian motion.
- $\xi \sim \mathcal{N}(0, I_d)$ is some initial noise.

Neural Stochastic Differential Equations

The Neural SDE takes the form

$$y_t = \ell_{\theta}(x_t),$$

$$dx_t = \mu_{\theta}(t, x_t) dt + \sigma_{\theta}(t, x_t) dW_t,$$

$$x_0 \sim \nu_{\theta}(\xi),$$

where

- $\mu_{\theta}, \sigma_{\theta}$ and ν_{θ} are neural networks.
- ℓ_{θ} is a linear map.
- *W* is a multidimensional Brownian motion.
- $\xi \sim \mathcal{N}(0, I_d)$ is some initial noise.

Questions

- What does it mean for a Neural SDE to correctly model the data?
- Should we minimize mean squared error? (like for Neural ODEs)

James Foster (University of Bath)

Neural SDEs for time series

We want

Distribution (SDE solution) \approx Distribution (Data)

We want

Distribution (SDE solution) \approx Distribution (Data)

Some approaches:

• <u>Match mean behaviour</u>, i.e. minimize $|\mathbb{E}_{y \sim \text{SDE}}[F(y)] - \mathbb{E}_{y \sim \text{Data}}[F(y)]|$

We want

Distribution (SDE solution) \approx Distribution (Data)

Some approaches:

- <u>Match mean behaviour</u>, i.e. minimize $|\mathbb{E}_{y \sim SDE}[F(y)] \mathbb{E}_{y \sim Data}[F(y)]|$
 - *F* is a <u>neural network</u> with $||F|| \le 1$ trained to maximize the difference

We want

Distribution (SDE solution) \approx Distribution (Data)

Some approaches:

- <u>Match mean behaviour</u>, i.e. minimize $|\mathbb{E}_{y \sim \text{SDE}}[F(y)] \mathbb{E}_{y \sim \text{Data}}[F(y)]|$
 - *F* is a <u>neural network</u> with $||F|| \le 1$ trained to maximize the difference
 - *F* is defined by a reproducing kernel $k(\cdot, \cdot)$. If $F = \sum_{i} \alpha_{i} k(x_{i}, \cdot)$, then

 $\max_{\|F\|\leq 1} \left| \mathbb{E}_{\mathsf{SDE}}[F(y)] - \mathbb{E}_{\mathsf{Data}}[F(y)] \right| = \mathbb{E}_{x,x'} \left[k(x,x') \right] - 2 \mathbb{E}_{x,y} \left[k(x,y) \right] + \mathbb{E}_{y,y'} \left[k(y,y') \right],$

where x, x', y, y' are independent with $x, x' \sim SDE$ and $y, y' \sim Data$.

We want

Distribution (SDE solution) \approx Distribution (Data)

Some approaches:

- <u>Match mean behaviour</u>, i.e. minimize $|\mathbb{E}_{y \sim \text{SDE}}[F(y)] \mathbb{E}_{y \sim \text{Data}}[F(y)]|$
 - *F* is a <u>neural network</u> with $||F|| \le 1$ trained to maximize the difference
 - *F* is defined by a reproducing kernel $k(\cdot, \cdot)$. If $F = \sum_{i} \alpha_{i} k(x_{i}, \cdot)$, then

 $\max_{\|F\|\leq 1} \left| \mathbb{E}_{\mathsf{SDE}}[F(y)] - \mathbb{E}_{\mathsf{Data}}[F(y)] \right| = \mathbb{E}_{x,x'} \left[k(x,x') \right] - 2 \mathbb{E}_{x,y} \left[k(x,y) \right] + \mathbb{E}_{y,y'} \left[k(y,y') \right],$

where x, x', y, y' are independent with $x, x' \sim SDE$ and $y, y' \sim Data$.

• Domain knowledge: E.g. in finance, *F* can be the pay-off of an option

We want

Distribution (SDE solution) \approx Distribution (Data)

Some approaches:

- <u>Match mean behaviour</u>, i.e. minimize $|\mathbb{E}_{y \sim \text{SDE}}[F(y)] \mathbb{E}_{y \sim \text{Data}}[F(y)]|$
 - *F* is a <u>neural network</u> with $||F|| \le 1$ trained to maximize the difference
 - *F* is defined by a reproducing kernel $k(\cdot, \cdot)$. If $F = \sum_{i} \alpha_{i} k(x_{i}, \cdot)$, then

 $\max_{\|F\|\leq 1} \left| \mathbb{E}_{\mathsf{SDE}}[F(y)] - \mathbb{E}_{\mathsf{Data}}[F(y)] \right| = \mathbb{E}_{x,x'} \left[k(x,x') \right] - 2 \mathbb{E}_{x,y} \left[k(x,y) \right] + \mathbb{E}_{y,y'} \left[k(y,y') \right],$

where x, x', y, y' are independent with $x, x' \sim SDE$ and $y, y' \sim Data$.

- Domain knowledge: E.g. in finance, *F* can be the pay-off of an option
- <u>Variational inference</u> gives lower quality SDEs, but is easier to train!

Training Neural SDEs in the Wasserstein metric

We would like to train the SDE to minimize the 1-Wasserstein distance:

$$W_1(\mathsf{SDE},\mathsf{Data}) := \sup_{\|F\|_{\mathsf{Lipschitz}} \le 1} \big| \mathbb{E}_{y \sim \mathsf{SDE}}[F(y)] - \mathbb{E}_{y \sim \mathsf{Data}}[F(y)] \big|.$$

That is, we want to find *F* that distinguishes between real and fake data.

Training Neural SDEs in the Wasserstein metric

We would like to train the SDE to minimize the 1-Wasserstein distance:

$$W_1(\mathsf{SDE},\mathsf{Data}) := \sup_{\|F\|_{\mathsf{Lipschitz}} \le 1} \big| \mathbb{E}_{y \sim \mathsf{SDE}}[F(y)] - \mathbb{E}_{y \sim \mathsf{Data}}[F(y)] \big|.$$

That is, we want to find F that distinguishes between real and fake data.

Some natural choices:

- Feedforward neural network
- Recurrent neural network
- Another neural differential equation!

We use the latter to define F_{ϕ} , which is then trained alongside the SDE.

Neural SDEs as Infinite-Dimensional GANs

In data science, a generator (NSDE) trained with learnt discriminator(s) (F_{ϕ}) is known as a Generative Adversarial Network (or GAN).

They usually generate images – not time series!

Figure: Images generated by the StyleGAN [5]

James Foster (University of Bath)

Neural SDEs for time series

Neural SDEs as Infinite-Dimensional GANs

James Foster (University of Bath)

1 Introduction

- 2 Neural Ordinary Differential Equations
- ③ Neural Stochastic Differential Equations
- 4 Numerical experiments

6 References

As a synthetic example, we generate 8192 samples $\{z_t\}_{t \in \{0,1,\dots,63\}}$ of the time-dependent Ornstein–Uhlenbeck process:

$$dz_t = (\mu t - \theta z_t) dt + \sigma dW_t,$$

where $\mu = 0.02$, $\theta = 0.1$, $\sigma = 0.4$ and $z_0 \sim U[-1, 1]$.

We then trained a SDE-GAN with

- evolving hidden states of size 32,
- a 3-dimensional Brownian motion,
- neural networks (MLPs) with width 16 and a single hidden layer.

Numerical experiments

Figure: Sample paths generated by an SDE-GAN trained on an OU dataset [6]

Figure: Marginal distributions at t = 6, 19, 32, 44, 57.

James Foster (University of Bath)

Neural SDEs for time series

Numerical experiments

Next, we consider a dataset of Google/Alphabet stock prices, obtained by LOBSTER (Limit Order Book System: The Efficient Reconstructor [7])

We trained a SDE-GAN with

- evolving hidden states of size 96,
- a 3-dimensional Brownian motion,
- neural networks (MLPs) with width 64 and two hidden layers.

Numerical experiments

Next, we consider a dataset of Google/Alphabet stock prices, obtained by LOBSTER (Limit Order Book System: The Efficient Reconstructor [7])

We trained a SDE-GAN with

- evolving hidden states of size 96,
- a 3-dimensional Brownian motion,
- neural networks (MLPs) with width 64 and two hidden layers.

Metric	Neural SDE [6]	Continuous Time Flow Process [8]	Neural ODE [9]
Classification	$\textbf{0.357} \pm \textbf{0.045}$	0.165 ± 0.087	0.000239 ± 0.000086
Prediction	$\textbf{0.144} \pm \textbf{0.045}$	0.725 ± 0.233	46.2 ± 12.3
Kernel distance	$\textbf{1.92} \pm \textbf{0.09}$	2.70 ± 0.47	60.4 ± 35.8

Table: Stocks dataset: mean \pm standard deviation over 3 runs. We model the 2D path consisting of the midpoint and log-spread (samples have length 100).

James Foster (University of Bath)

Conclusion

- NSDEs are continuous-time generative models for time series
- Flexible; ideas applicable to both mechanistic and deep models
- General approaches: Wasserstein GAN or Variational Inference
- NSDEs can be difficult to train! (and training can take a long time!)
- Software for neural differential equations in Python (PyTorch, Jax)
 - https://github.com/rtqichen/torchdiffeq
 - https://github.com/google-research/torchsde
 - https://github.com/patrick-kidger/diffrax

Thank you for your attention!

1 Introduction

- 2 Neural Ordinary Differential Equations
- ③ Neural Stochastic Differential Equations
- 4 Numerical experiments

5 References

References I

- R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. Duvenaud. *Neural Ordinary Differential Equations*, Neural Information Processing Systems, 2018.
- J. Zhuang, N. C. Dvornek, S. Tatikonda and J. S. Duncan. *MALI: A memory efficient and reverse accurate integrator for Neural ODEs,* International Conference on Learning Representations (ICRL), 2021.
- C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ramadhan and A. Edelman. Universal Differential Equations for Scientific Machine Learning, arXiv:2001.04385, 2020.
- P. Gierjatowicz, M. Sabate-Vidales, D. Šiška, L Szpruch and Ž. Žurič. Robust pricing and hedging via neural SDEs, arXiv:2007.04154, 2020.

References II

- T. Karras, S. Laine and T. Aila. *A Style-Based Generator Architecture for Generative Adversarial Networks*, IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019.
- P. Kidger, J. Foster, X. Li, H. Oberhauser and T. Lyons. Neural SDEs as Infinite-Dimensional GANs, International Conference on Machine Learning, 2021.
- J. Haase. *Limit order book system the efficient reconstructor,* https://lobsterdata.com, 2013.
- R. Deng, B. Chang, M. A. Brubaker, G. Mori and A. Lehrmann. Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows, Neural Information Processing Systems, 2020.

References III

- Y. Rubanova, R. T. Q. Chen and D. Duvenaud. *Latent Ordinary Differential Equations for Irregularly-Sampled Time Series*, Neural Information Processing Systems, 2019.
- T. DeLise. Neural Options Pricing, arXiv:2105.13320, 2021.
- X. Li, T.-K. L. Wong, R. T. Q. Chen and D. Duvenaud. *Scalable Gradients for Stochastic Differential Equations*, International Conference on Artificial Intelligence and Statistics (AISTATS), 2020.
- P. Kidger, J. Foster, X. Li and T. Lyons. *Efficient and Accurate Gradients for Neural SDEs*, arXiv:2105.13493, 2021.
- W. Xu, R. T.Q. Chen, X. Li and D. Duvenaud. *Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations*, arXiv:2102.06559, 2021.

24/25

References IV

- P. Kidger, J. Morrill, J. Foster and T. Lyons. Neural Controlled Differential Equations for Irregular Time Series. Neural Information Processing Systems, 2020.
- J. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. *Neural Rough Differential Equations for Long Time Series*. International Conference on Machine Learning (ICML), 2021.
- J. Morrill, P. Kidger, L. Yang and T. Lyons. *Neural Controlled Differential Equations for Online Prediction Tasks*. arXiv:2106.11028, 2021.
- S. N. Cohen, C. Reisinger and S. Wang. *Arbitrage-free neural-SDE market models*, arXiv:2105.11053, 2021.